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Abstract

We present a novel divide-and-conquer paradigm for approximating NP-hard graph opti-
mization problems. The paradigm models graph optimization problems that satisfy two proper-
ties: First, a divide-and-conquer approach is applicable. Second, a fractional spreading metric
is computable in polynomial time. The spreading metric assigns rational lengths to either
edges or vertices of the input graph, such that all subgraphs on which the optimization prob-
lem is non-trivial have large diameters. In addition, the spreading metric provides a lower
bound, 7, on the cost of solving the optimization problem. We present a polynomial time ap-
proximation algorithm for problems modeled by our paradigm whose approximation factor is
O (min{log 7 loglog 7, log k loglog k}), where k denotes the number of “interesting” vertices in
the problem instance, and is at most the number of vertices.

We present seven problems that can be formulated to fit the paradigm. For all these problems
our algorithm improves previous results. The problems are: (1) linear arrangement; (2) embed-
ding a graph in a d-dimensional mesh; (3) interval graph completion; (4) minimizing storage-time
product; (5) subset feedback sets in directed graphs and multicuts in circular networks; (6) sym-
metric multicuts in directed networks; (7) multiway separators and p-separators (for small values

of p) in directed graphs.
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1 Introduction

In this paper we describe efficient divide and conquer techniques that yield improved approximation
algorithms for a number of NP-Hard graph optimization problems. Our methods rely on a class of
functions on graphs that we call spreading metrics. Informally, a spreading metric on a graph is an
assignment of lengths to either its edges or vertices, so that subgraphs for which the optimization
problem is non-trivial are spread apart in the associated metric space. The volume of a spreading
metric on a graph is defined as the sum, taken over all edges (vertices), of the length of the edges
(vertices) multiplied by their capacity. The volume of the spreading metric provides a lower bound
on the cost of solving the optimization problem on the input graph. We use the spreading metric
to find a cut in the graph whose cost depends on the volume of the spreading metric in one of
the resulting subgraphs. Thus, we use a divide-and-conquer approach that divides the problem
according to the cost of solving the optimization problem, rather than traditional methods that
divide according to the sizes of the subproblems.

A b-balanced cut in a graph G = (V, F) is a cut that partitions the graph into connected
components (strongly connected components in the directed case), each of which contains at most
(1 = b) - n vertices, where n = |V|. Leighton and Rao [LR88] presented an algorithm that finds
a b-balanced cut, for any b < 1/3, whose capacity is O(logn) times the minimum capacity of a
bisector (a 1/2-balanced cut). Often, when the cost of a minimum capacity b-balanced cut can
be used to lower bound the optimal cost of the problem at hand, one can construct a log-square
approximation factor algorithm by recursively dividing the problems using b-balanced cuts for some
constant b. One logarithmic error term is due to the error in the separator procedure, and the other
comes from the recursion depth. On the face of it, it seemed that the only way to “break” the
log-square barrier in the framework described herein, is by improving the separator approximation.

Our methods allow us to break the log-square barrier by an almost logarithmic factor, without
finding better separators than [LR88]. The idea is that spreading metrics can be used to give an
estimate of the recursive cost of solving subproblems that arise in the divide-and-conquer methods.
Thus, we can manipulate the cost of the cut to be higher when the recursion makes a lot of progress,
and lower when it does not. In fact, we can do this to such an extent that we only pay a single
logarithmic factor (along with a doubly logarithmic factor) for both the recursion and the error
in the cut procedure. This generalizes the approach taken in by Seymour [Se95], in which the
existence of small feedback sets in directed unweighted graphs is proved.

Recently, in [ENRS95], we were able to extend our spreading metrics technique to graph par-
titioning problems. We were able to apply simpler recursion and obtain simple algorithms and
proofs for balanced cuts and multiway separators in which the approximation factor is logarithmic.
However, the simpler recursion does not apply for the applications described in this paper.

1.1 Results

We consider problems that are amenable to a divide-and-conquer approach and where a spreading
metric is computable in polynomial time. There are two main parameters that are attached to
each problem instance. The first one is 7, the volume of the spreading metric on the graph which



lower bounds the cost of the optimal solution and is usually obtained through a solution of a linear
program; the second parameter is k, the number of “interesting” vertices, as defined by the problem
instance, and is at most the number of vertices. We present a polynomial time approximation algo-
rithm for several problems where the approximation factor is O (min{log 7 loglog 7, log k log log k}).

We demonstrate the applicability of this approach by describing applications of our meth-
ods to seven problems that fit our paradigm. For all of these problems, our approximation
algorithm improve previous results. These problems are: (1) linear arrangement; (2) embed-
ding a graph in a d-dimensional mesh;' (3) interval graph completion; (4) minimizing storage-
time product; (5) (subset) feedback sets in directed graphs and multicuts in circular networks;
(6) symmetric multicuts in directed networks. (7) k-multiway separators and p-separators
in directed graphs. For the first four problems we improve the approximation factor from
O(log® n) to O(lognloglogn), where n denotes the number of vertices. (For these problems,
7 > n and k = n.) For problems (5) and (6), we improve the approximation factor from
0 (min{log 7 log log ,1og n log log n, log? k) to O (min{log T loglog 7,logkloglog k}), where k de-
notes the size of the subset in the subset feedback set problems, and the number of source-sink
pairs in the multicut problems. For Problem (7) our approximation algorithm finds a separator
whose capacity is O (min{logn loglogn,log 7'loglog 7'} - '), where 7/ denotes the optimal cost of
a v-separator, and v = 1/k in the multiway separator case, or v = p — ¢, for some fixed ¢, in the
p-separator case. As will be shown later, this improves on previous results, either when k is big
enough, or when p is small enough.

Some optimization problems require balanced partitioning for applying a divide-and-conquer
approach. However, the cuts we find are not guaranteed to be balanced. We present an additional
technique for balancing the decomposition found by recursively finding cuts.

1.2 Comparison to prior work

Leighton and Rao [LR88] presented an O(logn) approximation algorithm for balanced partitions of
graphs. Among other applications, this provided a basis for an algorithmic implementation of the
decomposition tree framework of [BL84]. Other applications described by [LR88] are: an O(log? n)
approximation algorithm for the minimum feedback edge set in directed graphs and an O(log? n)
approximation algorithm for the minimum cut linear arrangement problem.

The problems of linear arrangement and graph embeddings in d-dimensional meshes were con-
sidered by Hansen [Ha89]. His algorithms rely on the algorithm of Leighton and Rao [LR88] to
obtain O(log2 n) approximation algorithms for these problems. Our algorithms improve the ap-
proximation factor to O(lognloglogn). Ravi et al. [RAK91] considered a generalization of the
linear arrangement problem, called the storage-time product minimization problem. In case the
execution times of all tasks is the same their algorithm achieves an O(log® n) approximation factor.
Again, our algorithm improves this factor to O(lognloglogn).

'In fact, linear arrangement is a special case of embedding a graph in a d-dimensional mesh. We separate the
problems for simplicity of exposition, since solving the more general problem requires extra ideas.



The problem of finding a super-graph of a given graph, such that the super-graph is an interval
graph and contains as few as possible edges, was considered by Ravi et al. [RAK91]. They extended
Hansen’s technique for this problem and obtained an O(log2 n) approximation factor. We present
a novel linear programming formulation of this problem that enables us to use our paradigm to
obtain an O(logn loglogn) approximation factor.

Decompositions of directed graphs were considered in the works of [LR88, Se95, KPRT93,
ENSS95]. Seymour [Se95] was the first to present a decomposition algorithm that does not rely
on balanced cuts. His paper proves the existence of feedback vertex sets in unweighted directed
graphs of cardinality O(7logTloglogr). Klein et al. [KPRT93] considered symmetric multicuts
in directed graphs. By extending the work of Garg et al. [GVY93] to the directed case, they
obtained an O(log? k) approximation factor for this problem. Even et al. [ENSS95] considered
feedback set problems and their generalizations in directed graphs, as well as multicuts in circu-
lar networks. They presented an O(min{log 7 loglog 7,logn log log n, log* k}) approximation factor
for the subset feedback set problem, where k& denotes the number of special vertices. The first
two terms in the approximation factor were obtained by extending the work of Seymour [Se95],
and the last term was obtained by extending the work of [GVY93]. We use our paradigm to ob-
tain an O(min{log kloglog k,log 7 loglog 7}) approximation factor for all of these problems — an
improvement over previous works for small values of &.

The p-separator problem in directed graphs is to find a minimum capacity subset of edges whose
removal partitions the graph into strongly connected components each of which contains at most
p-n vertices, where n is the total number of vertices. This problem for both the undirected and the
directed cases was introduced in [ENRS95], where a logarithmic approximation factor algorithm is
described for the undirected case and also for the directed case when p > 1/2. The algorithm pre-
sented here applies to the directed case for the range p < 1/2. It finds a separator whose capacity is
O(min{log nloglogn,log 'loglog 7'} - 7'), where 7/ denotes the minimum cost of a v-separator, for
some fixed v < p. Another problem that we consider is that of computing k-multiway separators in
directed graphs. Here, we are interested in a minimum capacity subset of edges whose removal par-
titions the graph into strongly connected components that can be grouped into &k parts of roughly
equal size. We apply our p-separators algorithm to this problem and achieve an algorithm with the
same approximation factor, as detailed in Section 6. Note that one can find a 2v-separator (and
hence, also a k-multiway separator) by applying recursively the approximate separator algorithm
in [LR88] until all strongly connected components are small enough. (See also, [LMT90, ST95].)
This approach yields a 2v-separator whose capacity is O(lognlog(1/v)7’). Hence, our p-separator
algorithm is superior to the recursive one for p < max{1/logn, T’_loglogT,/logn}. (A similar im-
provement is achieved for the k-multiway separator problem as detailed in Section 6.)

The recent papers of Linial et al. [LLR95] and Aumann and Rabani [AR94] also consider metrics
on graphs. They regard graphs with edge lengths as geometric objects and map them into Fuclidean
spaces with a logarithmic distortion of the edge lengths. The dimension of the Euclidean spaces
they map the graphs into is poly-logarithmic, and the “geometry” of the graph is then utilized
for approximating multi-cuts. When we embed graphs into a Fuclidean space (e.g. d-dimensional
meshes), we consider only constant dimensionality. The main property we utilize for finding cuts is



that the diameter of every subgraph, that corresponds to a non-trivial sub-problem, is sufficiently
large.

The rest of the paper is organized as follows. Section 2 describes the approximation paradigm
and states its performance. Section 3 gives an algorithm for partitioning a large diameter graph.
This partitioning algorithm is used in the divide step of the divide-and-conquer algorithm described
in Section 4. Section 5 extends the divide-and-conquer algorithm to problems where the divide step
has to partition the graph into balanced parts. Finally, Section 6 describes the applications of the
algorithm.

2 The approximation paradigm

In this section we describe our approximation paradigm and state its performance. First, we
describe the “edge” version of our paradigm, and then we show how to modify it to get the “vertex”
version.

The paradigm includes minimization problems on graphs (directed and undirected) with edge
capacities. A problem instance, II, is denoted by a pair of graphs (G, H), where G = (V, F),is a
graph with edge capacities ¢(e) > 1, for every edge e € FE. The graph H = (V, Ey), called the
auzxiliary graph, is defined on the same vertex set. Qur paradigm does not define solutions of the
problems nor does it specify the cost of a solution. Instead, we demand that if the edge set Fp
is empty, then the cost of problem II on graph G, denoted by costr(G), is zero. In addition, we
require that the following two properties are satisfied.

Divide-and-conquer applicability. Problem II can be solved by using a divide-and-conquer
approach that partitions the problem into subproblems by either removing edges or removing
vertices. Consider the edge version, and let ' C E denote a subset of edges (usually, we will use
edge cuts). Define the capacity ¢(F') to be the sum of the capacities of the edges in F. Suppose that
removing the edges in £ disconnects the graph into p connected components. Let Vi, V5,...,V,
denote the p connected components of G’ = (V, £ — F'). Consider the subproblems corresponding
to each connected component of G’: let ; denote the subgraph of G' induced by V;, and let H;
denote the subgraph of H induced by V.

The applicability of divide-and-conquer means that the cost of solving problem II by partitioning
it into subproblems satisfies the following recurrence inequality.

0 if Eg =0.

t(G,H) <
cost(G, H) < { P, cost(Gy, H;) + scaler(H ) - ¢(F) otherwise

The coefficient scaler( H ) is a cost-scaler of the contribution of ¢(F") to the solution, and it depends
only on the auxiliary graph H. We assume that whenever H contains edges, then scaler(H) > 1. In
all the applications discussed herein, the cost scaler is a function of the size of the largest connected
component in H.



Spreading metric computability. A spreading metric is a function £ : F — Q that assigns
rational lengths to every edge e € F. It has to be computed in polynomial time, and needs to
satisfy two properties:

Lower-bound: The volume of the spreading metric, defined by 3~ .5 c(e){(e), is a lower bound on

cost(G, H ).

Diameter guarantee: The distance induced by the spreading metric “spreads” the graph and all its
subgraphs that correspond to non-trivial subproblems. More precisely, for vertices u and v,
let dist(u, v) denote the length of the shortest path from u to v, where distances are measured
with respect to edge lengths £(e). Let U C V be any subset of the vertex set. Denote by
Gy and Hyp the subgraphs of G and H induced by U, respectively. The diameter guarantee
implies that for every subset U C V, if Hy has at least one edge, then there exist two vertices
u,v € U that are connected in Hyr, for which dist(u,v) > scaler(Hyr).

The main result presented in this paper is the following theorem.

Theorem 1: For any optimization problem II that satisfies the above paradigm, it is possible to find
an approximation algorithm with approximation factor O (min{log 7 loglog 7, log k log log k}), where T

is the value of an optimal (fractional) solution, and k& < n is the number of vertices that are not isolated
in H.

Remarks:

1. For some problems an additional balance-constraint is required for applying a divide-and-
conquer paradigm. The balance-constraint requires that all the values {scaler(H;)}!_, are
upper bounded by a constant fraction of scaler( #). In applications where the auxiliary graph
H is a complete graph and the scaler function depends only on the cardinality of the vertex-
set in the auxiliary graph, then the balance constraint translates to the constraint that the
cut used is a b-balanced cut, for some b > 1/2.

2. If Hy contains at least one edge, then the diameter guarantee together with the assumptions
that c(e) > 1, and that the cost scaler is at least one, imply that the volume 3.5 c(e){(e) >
1.

3. In the “vertex” version of this paradigm: (i) the capacity function ¢(v) is associated with
each vertex v € V, rather than each edge, (ii) the problem is partitioned in the divide step
by removing vertices rather than edges, and (iii) the spreading metric assigns labels to the
vertices.

4. We can relax the diameter guarantee by only requiring dist(u,v) > ascaler(Hy), where o
is some parameter (constant or non-constant). For constant a, the resulting approximation
factor is multiplied by a factor of 1/a.



3 Partitioning high diameter graphs

The main step in our divide-and-conquer algorithm is the divide step. This step is done by applying
the cut procedure described in this section. Every cut partitions the graph into two parts. We
would like to charge the capacity of the cut to the volume of the part whose volume is smaller.
The cut procedure is based on a lemma that guarantees the existence of such a cut, provided that
the diameter of the graph is large enough. Moreover, the lemma proves the existence of such a cut
among a set of cuts that are defined by the layers of a shortest path tree rooted at a given vertex.
Our definitions and techniques apply both to directed and undirected graphs.

Let G = (V, E) denote a (connected) graph with edge capacities ¢(e) > 1 for all e € F. Let
H = (V, EFy) denote the auxiliary graph corresponding to GG, and let £(e) denote the non-negative
rational edge lengths obtained from a spreading metric computed on the original graph. (Note
that we perform this procedure recursively, and thus G is a subgraph of the original graph.) Let
u,v € V be two non-isolated vertices in the auxiliary graph H, for which the diameter property
guarantees A = dist(u, v) > scaler(H). Denote the r-region of u under the metric £(-) by N(u,r).
Namely, N(u,r)is the set of all vertices whose distance from u is at most r. Denote by E(u,r) the
set of edges for which both endpoints belong to N(u,r), and by C(u,r) the set of edges belonging
to the cut (N(u,r),V — N(u,r)). Define vol(u, ), the volume of N(u,r), to be:

vol(u,r) = Z cle)l(e) + Z c(e)(r — dist(u,z))

e€E(u,r) e=(z,y)€C(u,r)

Define vol,., (v, 7) to be the volume of the r-region of v in the reversed graph (in the undirected case
the reversed graph is the same as the original graph). Let vol* be the volume of the whole graph,
that is, vol* = vol(u,c0). Either vol(u, A/2) or vol,.,(v,A/2) is at most vol*/2. (In the “vertex”
version we replace A/2 by A/3 to handle the case where there is a vertex at distance exactly A/2
from w.) For simplicity, from now on we assume that vol(u, A/2) < vol*/2; otherwise, consider the
reversed graph and swap u and v.

Define N<(u,r) to be the set of all vertices whose distance from w is strictly less than r. The cut
procedure grows a region N(u,r) using a single-source shortest-path algorithm until the capacity
of the cut (N<(u,r),V — N<(u,r)) is bounded by an expression that depends mainly on vol(u,r),
as stated in the following theorem.

Theorem 2: Let G = (V, F) denote a graph with edge capacities ¢(e) > 1 and non-negative edge
lengths {(e). Let dist(u,v) = A for u,v € V. Suppose that vol(u, A/2) < vol*/2. Then, there exists a
radius A/4 < r < A/2 such that

4vol(u, ) e - vol* e - vol*
N< / — N< < —1 ( ) ol <7)
C( (U7 T)a‘ (uy Ir)) = A n 2\/0'(“7 7’) nin 2VOI(U, A/4) ’

and either r = dist(u, z) for some z € V', or r = A/2. (The base of all logarithms is ¢.)

Proof: We start by proving the first part of the theorem, namely, that there exists some radius
A/4 < r < A/2, for which the inequality holds. We then show that if » < A/2, and also r #



dist(u, z) for all z € V, then the same inequality holds either for dist(u,y), where y is the closest
vertex to u outside N(u,r) whose distance from u is at most A/2, or if no such vertex exists, then
the inequality holds for A/2.

Let M be a common multiple of all the denominators of the edge lengths. Observe that AM
is an integer, and that for all z € V', dist(u, z) is of the form ¢/M for some non-negative integer 1.
Consider the sequence b; = vol(u,7/(4M)), for AM < i <2AM. Note that byars < vol*/2.

To prove the theorem we need the following two lemmas that are proven below.

Lemma 3: For AM <1< 2AM,

1 it i1
bir1 —b; > a c (ﬁ\ <(u ),V —N<(u )) .

T AM T AM

Lemma 4: [Difference Lemma] Let 0 < ay < ag,...,a; < 1. Then, there exists an index i, 1 <1i < {—
1, for which
Aiyq — a; < i BN <e : a£> -Inln (e . ag) .
£—-1 it a1

To complete the proof of the theorem, apply the Difference Lemma to the sequence {b;}, and let 7

be the index for which

biv1 e - vol* e - vol*
biyq1 — b; -1 “Inl .
i SaAam " ( 2bi41 ) e < 2bAm )

Let r = (i+1)/(4M), by Lemma 3, b1 —b; > 77+ ¢(N<(u,7),V—N<(u,r)). Thus, the first part of
the theorem holds for the above choice of . Suppose that r < A/2 and r # dist(u,z) for all z € V.
We claim that in this case the inequality holds also for »/ = min{A/2, min,cy_n(u,idist(u,z)}}.
This is true since N<(u,r) = N<(u,r’), and hence, these regions define the same cuts. On the
other hand, the right hand side of the inequality monotonically increases as a function of r < A/2.

a
Proof of Lemma 3: Let r = (i+ 1)/(4M). By our definition b;1; = vol(u,r) and b; = vol(u,r —
1/(4M)). Define M, = N(u,r)— N(u,r—1/(4M)); that is, M, is the set of all vertices z such that
r—1/(4M) < dist(u,z) < r. However, since all distances are of the form i/M for some non-negative

integer 7, M, is the set of all vertices of distance exactly r from wu, if such exist. Define
F(u,r) = {(z,9) € E(u,r): dist(u, z) < dist(u, y) = r}.

Namely, F(u,r) contains the edges emanating vertices in N<(u,r) and entering vertices in M,. By

the volume definition

biy1 = Z cle)l(e) + Z c(e)(r — dist(u, z))

e€E(u,r) e=(z,y)€C (u,r)
> Z cle)l(e) + Z c(e)l(e) + E c(e)(r — dist(u, z)).
e€E(u,r—1/(4M)) e€F (u,r) e=(z,y)€C(u,r)



Note that strict inequality holds if there are edges in M, x M,. If e = (z,y) € F(u,r), then
since dist(u,y) = r, we infer that {(e) > r — dist(u,2). The definition of F(u,r) implies that
C(u,r—1/(4M)) C C(u,r)U F(u,r), and hence,

1
1 — by > > :
bz—}-l bz =AM C(e)

e=(z,y)€C(u,r— ﬁ)

To complete the proof observe that there are no vertices whose distance from u is strictly between
r—1/(4M) and r, hence, C(u,r —1/(4M)) = ¢(N<(u,r),V — N<(u,r)), and the lemma follows.
O

Proof of Lemma 4: lLet v = e-ay. Consider the sequence of differences defined by

/-1
{lnln ( 7 ) —Inln (l)}
41 a; i=1

There exists a difference which is greater than or equal to the average difference. Hence, there

exists an index 7 for which,

~

InIn (alé) ~Inln (E) < Inln (%) — Inln <l)
i+1

-1 a;

By the Mean Value Theorem (Lagrange’s Theorem), there exists a 8 € (a;, @;4+1) which satisfies,

v ¥ —(a41 — ;)
Inl —InIn|{—) = ——M—~
nln (%’4—1) nln <ai> 8- In(7/0)

Combining these two equations, we get,

In(vy/ay) 1 —(ait1 — a;)
n <ln('y/a1)> 1159 n(7/9)

Note that v/a, = e, hence,

1

aip1 —a; <0 -In % -Inln <l> T

a1

The function z In(y/z) is monotone increasing in the interval (0,7/e]. But, v/e = as, hence,

b v
f-In— i1 -1 .
ny < @41+ 1n o



4 Generic Approximation Algorithms

We consider a problem II that has a polynomial time computable spreading metric for the pair
G, H whose volume is at most cost(G, H). We also assume that the solution of II given by the
divide-and-conquer method can be bounded from above as follows.

if B =0.

0
t H) <
cost(G, ) < { iy cost(Gy, H;) + scaler(H) - ¢(L, R) otherwise

We now prove Theorem 1, showing that there is a polynomial time algorithm for II with ap-
proximation factor O(min{In7Inln7,InkInlnk}), where 7 is the volume of the optimal spreading
metric for II, and & < n is the number of vertices that are not isolated in H. The algorithm is a
simple divide-and-conquer algorithm. First, we compute the spreading metric for II, and then use
Theorem 2 as the divide step, as long as the subproblems defined by the resulting subgraphs are
non-trivial.

We distinguish between two cases: (i) 7 < k, in which we prove that the algorithm achieves the
approximation factor O(In7Inln7); and (ii) k¥ < 7, in which we prove that the algorithm achieves
the approximation factor O(In klnln k).

The case 7 < k. For 8 > 0, define P(8) to be the maximum cost of solving Il on a subgraph G’
whose volume is at most 3 using our algorithm. Define
a 4

— .Inln(2e7), and F(B) = L -In (44).

L
In2

Since L = O(loglogt) and F(7) = O(log Tloglog ), to prove Theorem 1 for this case, it suffices
to prove the following upper bound on P(5).

P(p) < max(BF(5),0) (1)

We prove Inequality (1) by induction on [43]|. The induction basis [48| < 4, or § < 1, follows
from the observation that if an induced subgraph Gy has volume 3 < 1, then cost(Gy, Hrr) = 0.
This is because for all subsets U C V, for which Gy has volume 8 < 1, the subgraph Hy consists
only of isolated vertices. We prove this assertion by contradiction. To obtain a contradiction,
assume that Hy contains a non-isolated vertex ». This implies that there exists another vertex
u € U such that dist(u,v) > scaler(H) > 1. However, since the capacity of each edge is at least
one, this implies that the volume of Gy is at least one; a contradiction.

We now prove the inductive step. Let @ £ 1 — a. Consider a graph G’ of volume ( that is
divided into two subgraphs where one has volume at most a8 and the other has volume at most
af (where @ < 1/2). Since the capacity of each edge is at least one, and since A > scaler(H) > 1,
it follows that vol(u, A/4) > 1/4. By the algorithm (Theorem 2), vol(u, A/2) < /2. The radius of
the region is between A/4 and A/2, hence, 1/4 < aff < /2.

We apply the induction hypothesis to the subgraphs. Since the volume of the smaller part af



is at least 1/4, we get that the cost of solving Il on the subproblems with volumes af and @ is
bounded by afF(af) and afF(ap), respectively.

Note that F'(af) increases as a function of a. Specifically,
F(aB) = F(8)+ L -In(a)

As long as F(af3) is positive (which is our case, since @ > 1/4), the recursive cost of solving

the two subproblems can be bounded as follows.

afF(af) + THF(@E) = BF(B)+ (aln(a)+aIn(@)- AL
< BF(B)+afLln(a).
We proceed by bounding the cost of the divide step in our algorithm. Recall that A > scaler( H'),

where H' is the auxiliary graph corresponding to G’. Since vol(u, A/4) > 1/4, the capacity of the

cut obtained using Theorem 2 is bounded by

%ln <%) InIn <2 elﬂ/4> .

Since § < 1, it follows that the capacity of the cut is bounded by

of In (;) L-In2.

scaler( H') a

Since the cost incurred in the divide step equals the cost of the cut times scaler( H'), we bound this
cost by afL1n(2)In(e/(2a)).
A bound on the total cost is derived by combining the cost of solving the two subproblems with

the cost of the divide step, to obtain

P(9) < 5P +apt (ma+ )i (1 )).

Since a < 1/2, the expression in the parentheses is non-positive, and hence P(8) < SF(3). Thus,
Inequality (1) holds.
The proof of Theorem 1 is concluded in this case by noticing that the cost of solving Il on G is

at most

P(r)=0(rIlnt-InlnTt).

The case k£ < 7. In this case we assume that for any subgraph of diameter A considered by our
algorithm, if u is the vertex in this subgraph around which the region was grown, then vol(u, A/4) >
[7/k]. This assumption can be made without loss of generality by modifying G' and the spreading
metric as follows. For every non-isolated vertex v of H, we add a self-loop in G touching the vertex
v with capacity 4[7/k]|/A. In the spreading metric we assign a length A/4 to each such self-loop.
So the volume associated with each self-loop equals [7/k]. These self-loops are removed as soon
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as the corresponding vertices in H become isolated. Since Theorem 2 guarantees the existence of a
region whose radius is at least A/4, it is easy to see that our assumption is justified provided that
we always grow regions around non-isolated vertices of the current auxiliary graph (which we do
by choosing u and » to be non-isolated vertices whose distance is at least the value of the scaler
function). We note that the modification increased the volume of the whole graph by at most
(4[7/k]/A)(Ak)/4 < k(1 + 7/k) < 27. This implies that vol* < 37. Although vol* may no longer
be a lower bound on the cost of the solution, it is only off such a bound by at most a constant.
Similar to the previous case, define P(f) to be the maximum cost of solving Il on a subgraph

G' of volume 3 using our algorithm. Define now,

3e-k

L= %lnln (T) ,and F(B)= L-In <|_T§k-‘) .

Note that now L = O(loglogk) and F'(1) = O(log TloglogT). As before, to prove Theorem 1, it
suffices to prove the upper bound 1 on P(f3); that is, P(3) < max(SF(5),0).
We prove Inequality (1) for the case 7 > k by induction on L%J The induction basis

L%J = 0 follows since if an induced subgraph G has volume 8 < [7/k], then cost(Gyr, Hy) = 0.
To see this, note that by our assumption, non-isolated vertices of the current auxiliary graph have
self-loops of volume [7/k]. Hence, if Gy has volume § < [7/k], then the corresponding subgraph
Hyr consists only of isolated vertices, and cost(Gyr, Hy) = 0.

Consider a graph G’ of volume  that is divided into two subgraphs where one has volume at
most a and the other has volume at most @ (where a < 1/2 and @ = 1 —a). By our assumptions,
vol(u, A/4) > [7/k], and vol(u,A/2) < /2. The radius of the region is between A/4 and A/2,
hence, [T/k] < af < /2.

We apply the induction hypothesis to the subgraphs. Since the volume of the smaller part af
is at least [7/k], the cost of solving IT on the subproblems with volumes a3 and @f is bounded by
afF(ap) and @ F(ap), respectively.

As in the previous case, the recursive cost of solving the two subproblems can be bounded as

follows.
afF(ap)+apF(ap) < BF(8)+ afLIn(a).

The cost of the divide step is bounded by

%1 (5 min (2;-%) |

3ek
2

Since 3 < 37, it follows that % < and we obtain the new bound

af e

—1 Lln2.
scaler( H') " <2a> "

Since the cost incurred in the divide step equals the cost of the cut times scaler(H'), we bound this
cost by afL1In(2)In(e/2a). The proof from this point on is identical to the case 7 < k and shows
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that the cost of solving Il on G is at most

P(31)=0 <T In <ﬁ) In ln(k)) .

5 Balanced decomposition trees

In this section we present a balancing technique that rearranges the cuts found according to Section
3. The balancing is required for applications in which divide-and-conquer methods are not useful
for the problem in hand, unless each partition is balanced. Our balancing technique is applicable
whenever the scaler function depends on the number of non-isolated vertices in the auxiliary graph.
In such cases a balanced partition of a subproblem, Il = (G, H), is a partitioning of the vertices
of G that divides the subproblem II into subproblems Iy = (G4, H1),1lz = (G, Hz), ..., such that
the number of non-isolated vertices in each subgraph H; is at most two thirds of the number of
non-isolated vertices in H. (Note that fragmenting the problem into many small problems only
helps us, however, we want to avoid large subproblems after the partitioning. This is why the
balancing condition only sets upper bounds on the sizes of the subproblems).

We address this balancing problem using the concept of a decomposition tree. Our partitioning
algorithm for any problem II defines a decomposition tree of the graph where each tree-node holds
a subproblem. The root of the decomposition tree holds the original problem, and the children of
each node t in the tree hold the subproblems obtained by partitioning the problem held by ¢. The
leaves of the decomposition tree hold subproblems that can be solved directly without any further
partitioning. We define the cost of an internal node in the tree that holds a subproblem (G5, Hs)
to be scaler(H;) times the cut cost incurred in the divide step for this node. We define the cost of
a leaf to be the cost of the subproblem it holds. The cost of the tree is the total cost of the nodes
in the tree, and constitutes an upper bound on the cost of solving II by the divide-and-conquer
algorithm induced by the decomposition tree, provided that the decomposition tree is balanced.

We show how to derive a balanced decomposition tree from the unbalanced decomposition
tree with only a constant multiplicative factor increase in the cost of the tree. Thus, we can find
an unbalanced decomposition tree, produce a balanced tree from it, and then apply the divide-
and-conquer algorithm using the partitions in the balanced decomposition tree. To simplify the
exposition, we further assume that the auxiliary graph H is a clique graph on V', which suffices for
our applications (e.g., graph embeddings in d-dimensions).

Given an unbalanced tree T', we obtain a balanced tree T’ from it by coalescing tree-nodes. We
first describe a procedure that finds a balanced partition of a given set of subproblems. Suppose
that the problem held by tree-node t' € T’ is partitioned into a set of subproblems Iy, II4,, .. .,
where subproblem Iy, is held by tree-node #; in the unbalanced tree T'. Let n(s) denote the number
of vertices contained in the subproblems held by a tree-node s. A straightforward partitioning
approach is to construct two children of ¢, denoted by a and b, and divide the subproblems held
by tree-node ¢’ between a and b, so that max{n(a),n(b)} < 2/3-n(t'). However, this approach fails
if ¢’ holds one relatively large subproblem. In such a case, we must partition a large subproblem
into smaller subproblems. The partitioning of a subproblem II;; is defined by the unbalanced
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decomposition tree 7', namely, by the decomposition of subproblem II;; into the subproblems held
by the children of t; € T'. The procedure for a balanced partition of subproblems held by tree-node
t' is a combination of these two approaches, as described below.

Initially, @ holds all the problems held by ¢ and b is empty. While n(a) > 2/3 - n(t'), we pick
a subproblem II;, held by a and remove it from the set of subproblems held by a. We consider
two cases: If n(t;) < n(t')/3, then Il;, is added to the set of subproblems held by b. Otherwise,
consider the partitioning of 1l;, defined by the children of ¢; in the unbalanced tree 7. This
partitioning divides II;, into at least two subproblems. Add a smallest subproblem to the set of
subproblems held by b, and add all the other subproblems to the set of subproblems held by a.
Note that the subproblem added to b contains no more that n(t;)/2 vertices. When this loop
ends, 1/3 - n(t') < n(a) < 2/3 - n(t"). The lower bound follows because when an iteration starts
n(a) > 2/3 - n(t'), and in each iteration n(a) decreases by at most n(a)/2. This implies that
n(b) < 2/3-n(t'), and hence a balanced partitioning of the subproblems held by ¢ is obtained. The
balanced decomposition tree T of problem II is obtained by assigning problem II to the root of
T’ and recursively applying the procedure for a balanced partitioning of subproblems to the nodes
of T'. This recursion is halted when a tree-node ¢ € T’ holds only trivial subproblems, namely,
subproblems that can be solved without any further partitioning.

Our assumption that the auxiliary graph H is a clique spanning all the vertices, implies that all
the edges of the graph GG belong to cuts in both trees, 7" and 7”. For an edge e € F, let #(e) denote
the tree-node in 7" whose cut contains e. Namely, e connects vertices that “belong” to different
children of #(e). Similarly, define #'(e) relative to the balanced tree 7”. The following lemma shows
that n(¢'(e))/n(t(e)) is bounded by a constant.

Lemma 5: For every edge e € F, n(t'(e)) < 3 - n(t(e)).

Proof: Let II;) denote the subproblem corresponding to tree-node ¢ in the unbalanced tree 7'
The construction of the balanced tree T’ implies that the edge e belongs to the cut corresponding
to t'(e) following a partitioning of the subproblem Iy(cy. This partitioning takes place only if
n(t(e)) > n(t'(e))/3, and the lemma follows. O

Define = sup Scalif) . The value of § is well defined and constant if we assume that
scaler(1z)

the function scaler(-) depends only on the cardinality of the vertices in the auxiliary graph, it is
monotone non-decreasing, and it is bounded by a polynomial. We are now ready to prove that the
cost of the balanced decomposition tree 7' almost equals the cost of an unbalanced decomposition
tree T.

Theorem 6: The cost of the balanced decomposition tree is at most 3 times the cost of an unbalanced
decomposition tree obtained by the separator procedure.

Proof: Lemma 5, the fact that scaler(-) is monotone non-decreasing, and the definition of 3, imply
that for every edge e € F,

scaler(n(t'(e)))
scaler(n(t(e)))

scaler(n(t'(e)))
scaler(n(t'(e))/3)

< <pB
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Hence,

cost(T") = Z scaler(n(t'(€))) - c(e)

eceE

< Z g - scaler(n(t(e))) - c(e)
eel

= [ -cost(T)

6 Applications

In this section we present seven optimization problems and show how they can be cast in the
paradigm of Section 2. For each problem we dedicate a subsection in which we define the problem

and show how to cast it in our paradigm.

6.1 Linear arrangement

The linear arrangement problem is defined as follows.

Input: An undirected graph G = (V, F) with a capacity c(e) associated with each edge e € F.
Output: A linear arrangement of the vertices h : V — {1,...,|V|}, that minimizes the total edge
lengths, i.e., >=._(; e c(€) - |A(i) — h(j)].

In the context of VLSI layout, |h(i) — h(j)| is referred to as the length of the interconnection
between ¢ and j. Finding an optimal linear arrangement is NP-hard. (See [GJ79, problem GT42,
p. 200].)

We show how to cast this problem in our paradigm. The graph H = (V, F) associated with
G = (V, E) is the clique graph Cy|, and the scaler function is defined by scaler(H = (V, Ep)) =
|V| — 1. Clearly, if H contains no edges, then |V| = 1 and cost(G, H) = 0. If |V| > 1, then the

length of every edge in the edge cut is at most |V| — 1, therefore,
cost(G,Cly) < cost(Gr,C\)) + cost(GRr,Cig) + (|[V[—1)-¢(L, R),

where Gy, is the subgraph of G induced by L and Gpg is the subgraph of G induced by R. This
establishes the divide-and-conquer applicability.
We now show how to compute the spreading metric. Consider the following linear program.

min Z c(e)-L(e)

eel

1
st YU CV,VoeU: Y dist(u,v) > —(|U]°-1)
4
uelU
Vee E: ((e)>0

In the linear program, we follow our previous notation that regards {(e) as edge lengths, and
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dist(u, v) is the length of the shortest path from u to v.

Lemma 7: Let {(e) denote a feasible solution of the linear program. For every subset U C V (|U| > 1),
and for every vertex v € U there is a vertex u € U for which dist(u,v) > 1|U]|.

Proof: The average distance of a node u € U — {v} from v is at least $(|U| + 1), because of the
constraint corresponding to U and v. Therefore, there exists a vertex u € U whose distance from
v is at least the average distance from v, and the lemma follows. |

Note that the previous lemma comes short of the diameter guarantee by a factor of 4. Namely,
the diameter of a subset U may not be greater than scaler( Hys), but it is greater than scaler( Hyr)/4.
This only affects the constant in the approximation factor.

In the next lemma we prove that the volume of an optimal solution of the linear program
satisfies the lower bound property.

Lemma 8: The cost of an optimal solution of the linear program is a lower bound on the cost of an
optimal linear arrangement of G.

Proof: Consider a linear arrangement h : V. — {1,...,|V|} of G. Define {(e) = |h(i) — h(j)| for
e = (i,j) € E. Clearly, the cost 3" .cpc(e) - £(e) equals the cost of the linear arrangement h(-).
Feasibility of £(-) is proven as follows. Consider a subset U C V, and a vertex v € U. Let Uy,
denote the vertices of U who are to the left of v, namely, Uz, = {u € U : h(u) < h(v)}. Similarly,
define Up = {u € U : h(u) > h(v)}. Now,

Zdist(u,v) = Z dist(u,v) + Z dist(u, v)

uelU uelUy, uelUg
IWel Ul
SIS o
=1 =1
oy e
SSETEN
=1 =1
U]* -1
> 21 -
- 4
Hence, £(-) is a feasible solution and the lemma follows. O

Finally, we show that the spreading metric can be computed in polynomial time.
Lemma 9: The linear program can be solved in polynomial time.

Proof: The linear program has an exponential number of constraints. However, it can be solved
using the Ellipsoid algorithm. This follows by observing that a violated constraint of a given
non-feasible solution can be found in polynomial time. Simply, run a single-source shortest paths
algorithm from every vertex v, and check that for all values of k£, 1 < k < |V, the k closest vertices
to v satisfy the appropriate constraint in the linear program. |
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6.2 Graph embeddings in d-dimensions

The second graph embedding problem we consider is graph embedding in d-dimensional meshes
defined as follows.

Input: An undirected graph G = (V, F) with capacity c(e) associated with each edge e € F.
Output: A one-to-one mapping, h, of G to a subgraph containing |V| vertices of the d-dimensional
grid. The value of the embedding is 37, ,yep d(h(u), h(v)), where d(z,y) is the number of mesh-
edges in the shortest path between z and y in the mesh.

A related graph embedding problem we consider is linear arrangement with d-dimensional cost.
Input: An undirected graph G = (V, F) with capacity c(e) associated with each edge e € F.
Output: A linear arrangement of the vertices A : V' — {1,...,|V|}, that minimizes the total
d-dimensional edge cost, i.e., 3-._; iy c(e) - [h(7) — h(j)|/4.

We refer to the cost function in the latter problem as the d-dimensional cost of a linear ordering.
The following lemma reduces the problem of graph embeddings in d-dimensional meshes to the

problem of linear arrangements with d-dimensional cost.

Lemma 10: Given a linear ordering of (G of d-dimensional cost-value A, one can produce a d-
dimensional embedding of G of cost-value O(d - |A]).

Proof sketch:  This follows directly from the existence of a curve through a d-dimensional grid,
where two vertices that differ by & along the curve are at distance O(dk'/?) in the d-dimensional
mesh. A Peano curve is an example of such a curve. See [S94] for a description of space filling
curves. O

Note that due to Lemma 10, the dimensionality of the mesh, namely d, increases the approxi-
mation factor by a linear factor in d.

We define the auxiliary graph H = (V, Fp) associated with G = (V, E) to be the clique graph
C)v|, and the scaler function by scaler(H ) = (V] - 1)1/d. As in the linear arrangement problem,
the length of an edge of a cut is at most (|V| — 1). Therefore, the cost associated with each cut-
edge is at most (|V|— 1)1/d, and the divide-and-conquer algorithm satisfies the following recurrence

inequality:
cost(G, Cly|) < cost(Gr,, Cjr)) + cost(Gr, Cig)) + (|V| = 1)/ ¢(L, R),

where G, is the subgraph of G induced by L and Gg is the subgraph of G induced by R.
The spreading metric is obtained by solving the following linear program.

min Z c(e)-L(e)
=1

1
st. YUCV, VoelU: Z dist(u,v) > ~ - (|U| = 1)t+1/4
4
uelU
Vee E: l(e)>0

The following lemma is analogous to Lemma 7, and proves that the diameter guarantee is satisfied

upto a constant of 4.
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Lemma 11: Let {(e) denote a feasible solution of the linear program. For every subset U C V
(U] > 1), and for every vertex v € U there is a vertex u € U for which dist(u,v) > 1 - (|U| - 1)/,

The following lemma is analogous to Lemma 8, and proves that the lower bound property is satisfied.

Lemma 12: The cost of an optimal solution of the linear program is a lower bound on the cost of a

minimum d-dimensional cost of any linear ordering of G.

Proof: The proof follows the proof of Lemma 8. Consider a linear ordering h(-) of the vertices
of G into a mesh. For every edge (i,7) € F, define {(7,7) to be |h(j) — h(i)|1/d. Clearly, the cost
Ycercle) - £(e) equals the d-dimensional cost of the embedding h(-). Feasibility of {(-) is proved
as follows. Consider a subset U C V', and a vertex » € U. Vertices in U are at integral distances
from v and at most two vertices are at any particular distance. We can thus derive the following

inequality.

L5 M
E dist(u,v) > Z M4 Z Ml
uelU =1 L=

[U]=1 [U]|-1

=1
> /[ 2 J,rl/dd;r—l—/[ 2 ]xl/ddx
0 0

d |br|_1 14+1/d
> 9 ( )
- 1+d 2

(U] = 1)*+Y4  (assuming d > 1).

v

1
4
The proof of the following lemma follows the proof of Lemma 9.

Lemma 13: The linear program can be solved in polynomial time.

Remark: An alternative method for finding a d-dimensional embedding is by following Hansen’s
technique [Ha89]. However, this requires finding a balanced partitioning of the graph so as to
maintain a constant aspect ratio of the meshes in the recursive calls. This can be done using

balanced decomposition trees that are presented in Section 5.

6.3 Minimizing storage-time product

Following Ravi et al. [RAK91], we consider the storage-time product minimization. To make the
presentation clearer we consider here only the special case in which all tasks require unit time.
However, our algorithm applies also to the more general case where the times differ.
Input: A directed acyclic graph G = (V, F) with edge capacities c(e). The vertices of G represent
tasks to be scheduled. An edge e = (u — v) with capacity ¢(e) corresponds to ¢(e) units of storage
generated by task # and consumed by task v.

v

Output: A linear ordering o : V — {1,...,|V|} of the vertices such that if (v — v) € F, then
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h(u) < h(v). This ordering corresponds to a scheduling of the tasks that obeys the precedence
constraints. The goal is to minimize the product storage-time. Assuming that all tasks are of unit
length, this translates to minimizing the cost of the ordering defined by cost(h) = 3, (h(v) —
h(u)) - c(u — v).

The divide-and-conquer condition is applied in the same manner as it is applied to the undirected
linear arrangement problem. The graph H = (V, F) associated with G = (V, F) is the clique

A v

here is directed we need to modify the way the spreading metric is computed. Following Ravi et

graph C|y|, and the scaler function is defined by scaler(H = (V, En)) — 1. Since the graph

al. [RAK91], we augment the graph by adding reversed edges, E® £ {v — u : u — v € E} with

infinite capacity. The spreading metrics is defined by the following linear program:

min Z c(e)-L(e)

ecEUER

st. YUCV, YoeU: > (dist(u,v)+ dist(v,u)) >
uelU

Vee EUER: f(e)>0

(101" =1

|

We use the convention that oo - 0 = 0, and hence, infinite capacity edges are assigned zero length.
The required properties of the spreading metric are proved in the following Lemmata, which
are analogous to Lemmata 7-9, and are also proved similarly.

Lemma 14: Let {(e) denote a feasible solution of the linear program. For every subset U C V
(JU] > 1), and for every vertex v € U there is a vertex u € U for which

max{dist(u, v),dist(v,u)} > < - |U|.

0| —

L,
8

attached by the scaler function. However, the ratio is at most 8, and hence, this affects only the

Note that the bound on the diameter of a subset U is g -|U|, which is smaller than the value |U|—1

constant in the approximation factor.

Lemma 15: The cost of an optimal solution of the linear program is a lower bound on the cost of an
optimal linear ordering of G.

Proof: The proof follows the proof of Lemma 8, the only difference is that reversed edges are
given zero length. |

Lemma 16: The linear program can be solved in polynomial time.

6.4 Interval graph completion

The interval graph completion problem is defined as follows.
Input: A connected undirected graph G' = (V, E).
Output: A minimum cardinality set of edges F' such that G = (V, EU F') is an interval graph.
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We present a novel method for obtaining a lower bound on the optimal interval completion
problem that is based on a linear programming formulation. We rely on the characterization of
interval graphs due to [RP88]: A graph is an interval graph if and only if there exists a linear
ordering of the vertices such that if a vertex u with index 7 has an edge to vertex » with index j,
where ¢ < j, then every vertex whose index is between 7 and j also has an edge to vertex v. Note
that such an ordering of the vertices of G’ uniquely defines a completion of G into an interval graph.
Thus, it suffices to show how to compute such an optimal ordering.

The following lemma uses the above characterization to establish a relation between the dif-
ference in indices of pairs of vertices and the sum of vertex degrees along any path connecting
them.

Lemma 17: Let H = (V, F) be an interval graph. Let h : V — {1,...,|V]|} be a linear ordering
of its vertices with the property guaranteed by the above characterization. Then, for every path P,
pP=v1,02,...,0p in H,

|(vp) = h(w1)] < Z: deg(v:),

where deg(v) denotes the degree of vertex v.

Proof: Without loss of generality assume that h(v,) > h(v1). Consider only the set of “right-
going” edges in path P, denoted by P,. For these edges h(v;+1) > h(v;). The above characterization
ensures that the right endpoint of each such edge (v;, v;41) satisfies deg(v;41) > h(vip1) — h(v;).
Thus,

h(vp) = h(v1) < 30 (h(vigr) = h(wi)

(vi,vig1)EPr

> deg(vig)

(vi,vit1)EPr

Zdeg(vi)-

IN

IN

O

We apply the “vertex-version” of the paradigm as follows. FEach vertex is assigned a unit

capacity. The graph H = (V, Fy) associated with G = (V, F) is the clique graph C|y|, and the

scaler function is defined by scaler(H = (V, Eg)) = |V| — 1. Following Ravi et al. [RAK91], we

show that nested dissection satisfies the required recurrence inequality. Namely, for every vertex

separator U that separates V into two sets L and R, if we order the vertices of . and R recursively,
and place the ordering of L before R (or vice-versa), followed by any ordering of U, then

cost(G, Cy|) < cost(Gr, Cr|) + cost(GR, Cg)+ (|V]—1)-|U]

where G, and G are the subgraphs of G induced by L and R. The above inequality holds because
at most (|V|— 1) edges need to be added per vertex in U. This establishes the divide-and-conquer
applicability.
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The spreading metric is obtained by solving the following linear program. Since we are using a
vertex version of the paradigm, we attach a length {(v) to each vertex v, where £(v) can be viewed
as the fractional degree of v; and dist(u,v) denotes the shortest path connecting u and » with

respect to the vertex lengths {(v).

1
min §E€(v)
veV
1
1. JCVNvelU: Y dist(u,v)> —(|U]* -1
s YU CV,Vvel is (u,v)_4(|U| )

uelU
VoeV:l(v)>0

The following three lemmata are analogous to Lemmata 7-9, and are proved similarly.

Lemma 18: Let {(e) denote a feasible solution of the linear program. For every subset /' C V, and
for every vertex v € U, there exists a vertex u € U for which dist(u,v) > 1|U].

Lemma 19: The cost of an optimal solution of the linear program is a lower bound on the minimum

number of edges in an interval graph completion of G.

Proof: Consider a completion of G' to into an interval graph G*(V, E*). For every v € V, let {(v)
be the degree of v in G*. Clearly, the cost 3 3, oy €(v) equals the number of edges in E*. We show
feasibility of this solution by considering a linear ordering h(-) of G* with the property guaranteed
by the characterization above. Fix a subset U C V and a vertex » € U. Consider a shortest path
P, with respect to £(-), that connects v and u, i.e. dist(u,v) =), cp {(z). Since £(x) is the degree
of z in G*, by Lemma 17 we have )~ cp{(z) > |h(u) — h(v)|. Summing over all vertices in U and

using Lemma 8, we get

(101" = 1)

|

Z dist(u,v) > Z |h(u) — h(v)| >

uelU uelU

and the lemma follows. O

Lemma 20: The linear program can be solved in polynomial time.

6.5 Feedback sets in directed graphs and multicuts in circular networks

In this subsection we consider a generalization of the weighted feedback set called the weighted
subset feedback set problem. This problem has two versions, subset feedback edge set (SUBSET-FES),
and subset feedback vertex set (SUBSET-FVs), which were shown to be equivalent in [ENSS95]. Thus,
we consider here only the SUBSET-FES problem defined as follows.

Input: A directed graph G' = (V, E) with capacities ¢(e) associated with each edge e € E. A
subset X C V of “special” vertices, where | X| = k.

Output: A minimum capacity subset of edges that intersects every interesting cycle, i.e., a cycle

containing a vertex from X.
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In [ENSS95] it is shown that this problem is equivalent to the problem of finding a multicut in
circular network which is defined as follows.

Input: A directed graph G = (V, ') with a capacity c(e) associated with every e € E, and a set of
k source-sink pairs {(si,t;)};—; ;. For every source-sink pair, (s;,?;), there is an infinite capacity
edge t; — s;.

Output: A minimum capacity subset of edges I C F that intersects every path in G from a source
to its corresponding sink.

We show how to cast the multicut problem in our paradigm. The directed graph H = (V, Fpr) as-
sociated with G = (V, F)is the “demands” graph, defined by the set of edges Frr = {(s;, ti)}i:17...7k.
The scaler function is defined by scaler(H = (V, Eg)) = 1 if Ex is non-empty, and 0 otherwise.
Clearly, if Efy = 0, then all the source-sink pairs are separated and cost(G, H) = 0. Suppose that
Ep # 0 and we add a cut (L, R) of finite weight to the multicut, then the following recurrence
inequality holds.

cost(GG, H) < cost(Gr, Hr,) + cost(GRr, Hr) + ¢(L, R),

where G, and Hy, are the subgraphs of G and H induced by L, and Gr and Hp are the subgraphs
of G and H induced by R. Note that this recurrence does not hold for arbitrary directed multicut
problems, but holds only for circular networks which have infinite capacity edges from each sink to
its corresponding source. This establishes the divide-and-conquer applicability.

The spreading metric is defined by the following linear program.

min Z c(e)-L(e)

=1

s.t. For 1 < i <k, for every path P from s; to i;: Z le)>1
eeP
Vee E: l(e)>0

The following three lemmata prove that the spreading metric meets the required properties.
The next lemma is immediate.

Lemma 21: Let {(e) denote a feasible solution of the linear program. For every subset U C V, if U
contains a source-sink pair, then the distance from the source to the sink is at least 1.

Lemma 22: The cost of an optimal solution of the linear program is a lower bound on the cost of an
optimal multicut of G.

Proof: Given a multicut of G, denoted by F’, define {(¢e) to be the indicator function of F'. Clearly,
£(-) is feasible and its cost equals the capacity of F. |

Lemma 23: The linear program can be solved in polynomial time.

Proof: The proof follows the proof of Lemma 9. Given edge lengths, one can check feasibility by
checking whether the length of a shortest paths from s; to ¢; is at least 1. |
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6.6 Symmetric multicuts in directed networks

Klein et al. [KPRT93] considered a variant of network decomposition, called symmetric multicuts:
Input: A directed graph G' = (V, F') with a capacity c(e) associated with every e € F, and a set
of k terminal pairs {(si,t:)},—y -

Output: A minimum capacity subset of edges I© C F such that every terminal pair is separated
into two different strongly connected components in the graph G’ = (V, E — F).

The symmetric multicut problem is cast in our paradigm similarly to the multicut problem.
The only difference is that the auxiliary graph is undirected, and has edges connecting terminal
pairs.

The spreading metric is computed by the following linear program.

min Z c(e)-L(e)

eel

s.t. For 1 <1 <k, for every cycle C' that intersects s; and #;: E le)>1
ecC
Veec E: ((e)>0

The following three lemmata are similar to Lemmata 21-23.

Lemma 24: Let {(e) denote a feasible solution of the linear program. For every subset U C V, if U
contains a terminal pair (s;,1;), then either the distance from s; to t; is at least 1/2, or the distance

from t; to s; is at least 1/2.

Lemma 25: The cost of an optimal solution of the linear program is a lower bound on the cost of an

optimal symmetric multicut of G.

Lemma 26: The linear program can be solved in polynomial time.

6.7 Multiway separators and p-separators in directed graphs

We first discuss the directed p-separator problem. The problem of finding p-separators in undirected
and directed graphs is introduced in [ENRS95]. We consider here only directed graphs since the
approximation factor given in [ENRS95] for undirected graphs is better than the approximation
factor described here. However, both cases can be cast into our paradigm. For simplicity, we
consider here only the case in which all vertices have unit weights (although edges may have
different capacities); the weighted case is described in [ENRS95].

For 0 < p < 1, recall that a p-separator in a directed graph G = (V, F) is a subset of edges
whose removal partitions GG into strongly connected components, each of which contains at most
p - n vertices, where n = |V|. The directed p-separator problem is defined as follows:

Input: A directed graph G = (V, F) with a capacity c(e) associated with every e € F, and a
parameter 0 < p < 1.
Output: A minimum capacity directed p-separator.
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The performance of the approximation algorithm for this problem differs from the other prob-
lems treated in this paper, and is sometimes called a “pseudo-approximation algorithm” or a “bi-
criteria approximation algorithm”. The input contains instead of a single parameter p, 0 < p < 1,
two parameters p and v, 0 < v < p < 1. The algorithm finds a p-separator, and the cost of the solu-
tion is compared with the cost of an optimal v-separator. Hence, we compare the cost of the found
solution with the cost of an optimal solution to a tighter problem. We need the difference between
p and v in order to guarantee a diameter, as described in Lemma 27. To summarize, we find a
p-separator whose capacity is O (/)_LU -min{log n log log n, log T log log 7} - T), where 7 denotes the
cost of an optimal v-separator.

In [ENRS95] we relate the p-separator problem to the problem of partitioning a graph into k
roughly equal parts, which is called the k-multiway separator problem. Specifically, we show that if
every strongly connected component contains at most p-n vertices, then every maximal grouping of
strongly connected components (such that each group still contains at most p-n vertices) contains
less that 2/p groups. Hence, we can compute k-multiway separators by finding a 2/k-separator and
grouping the resulting components.

The k-multiway separator problem was considered by Leighton et al. [LMT90] and by Simon and
Teng [ST95]. They proposed applying recursively the approximate separator algorithm in [LR8S8]
until all strongly connected components are small enough. This approach yields a k-multiway
separator in which the number of vertices in each part is bounded by 2n/k. The capacity of the
separator is O(log nlog k-7'), where 7/ denotes the minimum cost of a 1/k-separator. Our algorithm
is more flexible and yields a partitioning in which each part contains at most (14 ¢)n/k vertices,
for any € > 0. The capacity of the separator is O((1/¢) - min{log nloglog n,log 7' loglog 7'} - /). If
we compare these results for ¢ = 1, then our algorithm is superior to the recursive algorithm when
k > min{log n, 7108108 7"/ legny

We now show how to cast the directed p-separator problem into our paradigm. First, we need
to extend the definition of the auxiliary graph to hypergraphs. The hyperedges of the auxiliary
hypergraph H = (V, Fpr) associated with G = (V, F) are defined as follows: X C V is a hyperedge
if | X| > v-n and the subgraph Gx of G induced by X is strongly connected. For every sub-
hypergraph Hyp of the hypergraph H induced by a subset of vertices U, the scaler function is
defined by scaler( Hyr) = 1 if Hy contains at least one hyperedge, and 0 otherwise.

Clearly, if Hy lacks hyperedges, then all the strongly connected components in Gy are small,
and hence, cost(Gyr, Hy) = 0. Divide and conquer now applies as in Section 6.5 by removing the
edges of the directed cut in each divide step.

In the sequel we show that an optimal solution to the linear program given below is a spreading
metric.

min Z l(e)

eel

st. VYUCV,VoeU: E(dist(v,u) + dist(u,v)) > |U|—v-n
uel
Veec E: l(e)>0
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Note that the constraints for small subsets of vertices (namely, |U| < v - n) are trivial and may be
omitted.

Lemma 27: If U C V satisfies |[U| > p - n, then for every vertex v € U there exists a vertex u € U,

such that
—v

p

dist(v,u) + dist(u,v) > P

The proof of this lemma is similar to the proof of Lemma 7. Note however, that our relaxation of

the diameter guarantee adds a factor of /)2_—py to the approximation factor. Since we cannot guarantee

p—v

2p

a diameter of at least unless there are at least p - n vertices, we obtain a p-separator rather

than a v-separator.

Lemma 28: The cost of an optimal solution of the linear program is a lower bound on the cost of an
optimal v-separator.

Proof: Consider an optimal v-separator F* C E. Define {(e) to be the indicator function of
F. In order to show that {(e) is a feasible solution of the linear program, consider an arbitrary
constraint for U C V and v € U. Define compy(v) to be the set of vertices in the strongly connected
component of G' = (V, E — F) that contains vertex v. Since F is a v-separator, it follows that
|compr(v)| < v-n. If u & compp(v), then either every path from u to v contains an edge from F,
or every path from v to u contains an edge of F. Hence, dist(v, u) + dist(u,v) > 1, and

Z(dist(’v, u) + dist(u,v)) > Z (dist(v,u) + dist(u,v))
uelU w€U—-Comp (v)

> |U — compp(v)|

> |U] = |compp(v)|

> |Ul-v-n

The proof of the following lemma follows the proof of Lemma 9.

Lemma 29: An optimal solution to the linear program is computable is polynomial time.
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